Importance of monoamine oxidase A in the bioactivation of neurotoxic analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

نویسندگان

  • R E Heikkila
  • M V Kindt
  • P K Sonsalla
  • A Giovanni
  • S K Youngster
  • K A McKeown
  • T P Singer
چکیده

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent dopaminergic neurotoxin that causes biochemical, pharmacological, and pathological deficits in experimental animals similar to those seen in human parkinsonian patients. All of the deficits can be prevented by treating mice with selective inhibitors of monoamine oxidase B (MAO-B), including deprenyl, prior to MPTP administration. We now report that the dopaminergic neurotoxicity of two potent MPTP analogs, namely the 2'-methyl and 2'-ethyl derivatives (2'-MeMPTP and 2'-EtMPTP), cannot be prevented by deprenyl pretreatment. However, the neurotoxicity of these two analogs can be prevented by pretreatment with a combination of deprenyl and the selective MAO-A inhibitor clorgyline at doses that are sufficient to almost completely inhibit both MAO-B and MAO-A activities. Moreover, the neurotoxicity of 2'-EtMPTP (but not of 2'-MeMPTP and MPTP) can be significantly attenuated by clorgyline alone. There was a parallel between the capacity of the MAO inhibitors to decrease the brain content of the pyridinium species after administration of the tetrahydropyridines and the capacity of the MAO inhibitors to protect against the neurotoxic action of the tetrahydropyridines. The data support the conclusion that both 2'-MeMPTP and 2'-EtMPTP are bioactivated to pyridinium species to a significant extent by MAO-A. Further, it appears that the formation of the pyridinium species plays an important role in the neurotoxic process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidases.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of a meperidine-like narcotic used by drug abusers as a heroin substitute, produces Parkinsonian symptoms in humans and primates. The nigrostriatal toxicity is not due to MPTP itself but to one or more oxidation products resulting from the action of monoamine oxidase (MAO) on this tertiary allylamine. Both MAO A an...

متن کامل

Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity.

Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, we hypothesized that systemic MPTP may be metabolized by monoam...

متن کامل

Deuterium isotope effect measurements on the interactions of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidase B.

Kinetic deuterium isotope effects for the noncompetitive, intermolecular monoamine oxidase B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the corresponding 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+ were found to be 3.55 on Vmax and 8.01 on Vmax/Km with MPTP-6,6-d2 as the deuterated substrate. Similar values were obtained with MPTP-2,2,6-d4 and MPTP-C...

متن کامل

Evidence that the inhibition sites of the neurotoxic amine 1-methyl-4-phenylpyridinium (MPP+) and of the respiratory chain inhibitor piericidin A are the same.

1-Methyl-4-phenylpyridinium (MPP+), the neurotoxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), interrupts mitochondrial electron transfer at the NADH dehydrogenase-ubiquinone junction, as do the respiratory chain inhibitors rotenone, piericidin A and barbiturates. Proof that these classical respiratory chain inhibitors and MPP+ react at the same site in the com...

متن کامل

Comparative toxicity and antioxidant activity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its monoamine oxidase B-generated metabolites in isolated hepatocytes and liver microsomes.

MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted by monoamine oxidase B to its putative toxic metabolite MPP+ (1-methyl-4-phenylpyridinium ion) via MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium ion). Both the parent compound and these two major metabolites were toxic to isolated rat hepatocytes with MPDP+ being the most toxic and MPP+ the least effective. MPP+ produced a slight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 16  شماره 

صفحات  -

تاریخ انتشار 1988